新澳门官方娱乐网址-澳门十大网上博网址

个人门户| 邮箱登录| English| VPN链接| 联系查询|

学术信息

新澳门官方娱乐网址

TWO-STAGE QUADRATIC GAMES UNDER UNCERTAINTY AND THEIR SOLUTION BY PROGRESSIVE HEDGING ALGORITHMS

报告人:  孙捷 澳大利亚科廷大学传授

报告时间:20181024日周三上午10:00

报告地点:西教五416(理学院)

   报告题目:TWO-STAGE QUADRATIC GAMES UNDER UNCERTAINTY AND
THEIR SOLUTION BY PROGRESSIVE HEDGING ALGORITHMS
报告摘要:A two-stage N-person non-cooperative game model under uncertainty is studied, in which each player solves a quadratic program parameterized by other players decisions at the first stage, then the player solves a recourse quadratic program  at the second stage, which is parameterized by the realization of a random vector, the second-stage decisions of other players, and the first stage decisions of all players. The problem of finding a Nash equilibrium of this game is shown to be equivalent to a stochastic linear complementarity problem. Conditions for monotonicity of the corresponding stochastic linear complementarity problem are investigated. A progressive hedging algorithmis proposed for solving the monotone case. Various numerical experiments indicate that the progressive hedging algorithm is efficient for mid-sized monotone problems.

 

报告人概况:孙捷传授本科毕业于清华大学,中国科学院应用数学所和美国华盛顿大学硕士,美国华盛顿大学博士。是国际著名的优化专家。他1986-2014分别任职于美国西北大学和新加坡国立大学,此中1999-2008他任新加坡-麻省理工学院联盟院士。新加坡国立大学授予他杰出大学研究者奖并任命他为讲座传授。自2014年起任澳洲科廷大学数学统计系杰出研究传授。他在内点算法和非光滑牛顿算法研究有突出的贡献。目前研究兴趣集中于随机变分不等式和分布鲁棒优化问题。他1993年联名发表的一篇论文, 在2003年被评为“过去10年引用率最高的数学及统计学论文”之一。他也是国际信息科学学院评出的“2002-2012期间被引用最多”的数学家之一,曾多次受邀在国际会议上做大会演讲并应邀担任美英德日等国多种学术杂志的主编或副主编。


新澳门官方娱乐网址

XML 地图 | Sitemap 地图

新澳门官方娱乐网址

XML 地图 | Sitemap 地图